The College of Earth, Ocean, and Atmospherics Sciences at Oregon State University is proud to announce the availability of paid summer undergraduate research internships in geology, oceanography, and atmospheric and climate science.


Funded by the National Science Foundation, the Research Experience for Undergraduates (REU) program offers students the unique opportunity to work on individual research projects, and participate in group field trips, seminars and science colloquia over a nine week period at CEOAS under the guidance of university scientists, who serve as mentors. The summer REU program runs from June 14 to August 13, 2021. Successful applicants receive paid round-trip travel to Oregon, on-campus housing for the duration of the internship, and a weekly stipend.

Research Areas

CEOAS offers a broad range of undergraduate research opportunities and engineering applications in the physics, chemistry, geology, and biology of the Earth, oceans, and atmosphere. CEOAS research areas include ocean ecology, biogeochemistry, geomicrobiology, fisheries oceanography, physical oceanography, autonomous ocean observing, atmospheric science, climate modeling, marine geology, sedimentology, paleoclimatology, and geophysics. We welcome applications from students with backgrounds and interests in any of these areas, including atmospheric science, biochemistry, chemistry, computer science, earth science, engineering, environmental science, mathematics, microbiology, or physics majors.

If you want to apply what you've learned in the classroom to real world problems, then a research experience in the earth, ocean, and atmospheric sciences at CEOAS may be right for you. The earth, ocean, and atmospheric sciences are applied sciences – we draw on knowledge from a variety of academic backgrounds to solve real-world problems. Examples include:

  • development and application of analytical chemistry techniques to parts-per-trillion measurements of individual species in complex solutions;
  • physics of heat and mass transfer in solid and fluid earth materials;
  • exploiting the physics of light to gather information about the oceans remotely;
  • development of computer code to help assimilate and model large observational data sets;
  • design and deployment of remotely operated autonomous sampling platforms in the ocean

A directory of potential mentors and undergraduate research areas appears below.

The Summer Program Experience

Students are paired with research mentors in their area of interest and gain experience in research design, data collection and analysis techniques, and interpretation and publication of results. Opportunities abound to gain field and lab experience within individual and related projects, including sea-going experience on OSU’s research vessel, the R/V Oceanus. There are numerous opportunities to interact with other scientists and students in CEOAS and other departments on the Corvallis campus and at the Hatfield Marine Science Center in Newport, through orientation, weekly seminars, group field trips, and project presentations.

Program Dates and Benefits

June 14- August 13, 2021. Paid round-trip travel to Oregon, on-campus housing, and a stipend of $600/week are provided. The program also provides support for student travel to present at national scientific meetings and symposia.


Students pursuing an undergraduate degree at a two or four year college who are not graduating seniors are eligible to apply. Applicants must be U.S. citizens or permanent residents. We are particularly interested in applications from students from groups underrepresented in the earth, ocean, and atmospheric students, and from students attending community college but transferring to a four year school in fall 2021.

Application and Deadline

The online application for summer 2021 is now available and applications are due February 15, 2021 at 11:59 pm PST. On your application list the faculty mentors and Potential Projects that interest you. See the list below. Also browse our listings of past REU projects:

2019  2018  2017  2016  2015  2014  2013  2012  2011

The application will ask you to provide the name, title and institution, and contact information for two professional references. Applicants are responsible for contacting their references and asking them to submit their recommendations at this link. Please ensure that your references submit their recommendations by 11:59 pm PST on February 15, 2021 to be included in your application.


For more information specific to the CEOAS internships, please contact Kaplan Yalcin. Summer research internships in marine and estuarine science are also available at OSU's Hatfield Marine Science Center. For more information on these internships, visit the Hatfield Marine Science Center website.

Program Funding

Funding for this REU site is provide in by the National Science Foundation’s Division of Ocean Science's located in Alexandria, VA. (NSF OCE-1758000) The NSF contact for this program is Elizabeth Rom. NSF does not handle REU applications; please contact each REU site directly for application information. All students who are offered a position at this REU site have until March 15th or later to accept or reject the offer. This means the earliest any applicant can accept a position is March 15.

Directory of Potential Mentors and Undergraduate Research Areas

Christo BuizertChristo Buizert

2012, PhD in geophysics, Niels Bohr Institute, University of Copenhagen
2007, MSc in physics, Delft University of Technology, Netherlands
2004, BSc in physics, Delft University of Technology, Netherlands

Interests: My work aims to reconstruct and understand past climate change and atmospheric composition, using deep ice cores from Greenland and Antarctica. I combine ice core measurements, numerical modeling and fieldwork to achieve these goals.

Potential Projects: Ideally a combination of laboratory work and data analysis. Examples could be measuring greenhouse gas concentrations in ice core samples from Greenhouse and Antarctica, analyzing existing data sets to understand the process of bubble trapping in polar ice, or interpreting records of past greenhouse gas variations in a climatic context.

Background/skills sought in an undergraduate: Interest in past climate change, atmospheric composition and the polar regions. A Background in Earth sciences, physics, chemistry or mathematics. Being comfortable with (or interested in learning) numerical data analysis.

Lorenzo CiannelliLorenzo Ciannelli

2002, Ph.D., Aquatic Fishery and Sciences, University of Washington
1993, Laureate, Biology, Universita' Degli Studi di Napoli "Federico II", Italy

Interests: My primary research focus is on fisheries oceanography and marine ecosystem ecology. I am interested in studying the causes of temporal and spatial variations of marine populations. Most of my work revolves around early life stages of fish, as variability at the population level is closely linked to egg, larval and juvenile survival in marine organisms. Through these investigations I combine quantitative analyses (i.e., mathematical and statistical modeling) with more field and experimentally oriented approaches.

Potential Projects: My primary research focus is on fisheries oceanography and marine ecology. I study the causes of temporal and spatial variation of marine populations, and the conservation implications of the ensuing findings. Most of the work that we conduct is from data collected by federal management agencies (e.g., NOAA) in sub-arctic and temperate systems in both the North Pacific and the North Atlantic, and involves a fair amount of computational analysis. The goal of these analyses is to gain ecological understanding and provide scientifically sound advice in management and conservation issues. Methods that I use in my research include statistical analyses of long spatio-temporal data series, typically from surveys and other monitoring programs, combined bio-physical modeling for assessing distributions of fish with dispersal life history stages.

Background/skills sought in an undergraduate: Undergraduate students working in my lab have a strong desire to use quantitative and analytical methods in order to make ecological inference.

Rick ColwellRick Colwell

1986, Ph.D., Microbiology, Virginia Tech
1982, M.S., Microbiology, Northern Arizona University
1977, B.A., Biology, Whitman College

Interests: Microbial ecology, subsurface microbiology, geomicrobiology, coupling of microbial rates and processes to physical and chemical parameters in the environment, sensing and monitoring of microbes, and methods for sampling the earth's subsurface for microorganisms.

Potential Projects: Our research involves investigating microorganisms in a range of subsurface (shallow and deep Earth) environments. We study microbial diversity and activity in marine or terrestrial settings important for natural processes or where the system is being altered by human activity. We use molecular biology and computational tools to determine the types of cells present, the numbers of cells, their metabolic rates, and how these cells are distributed with respect to physical and chemical properties of different Earth environments.

Background/skills sought in an undergraduate: Scientific curiosity, familiarity with or interest in learning DNA extraction and bioinformatic techniques, desire to explore the range of environments in which life exists on earth.

Ed DeverEdward (Ed) Dever

1995, Ph.D., Physical Oceanography, MIT-WHOI Joint Program
1989, M.S., Oceanography, Texas A&M University
1987, B.S., Physics, Texas A&M University

Interests: I am a principal investigator and project scientist for the Ocean Observatories Initiative (OOI) Northeast Pacific Endurance Array and lead the operation and maintenance of coastal ocean moorings, profilers, and gliders off Oregon and Washington. The OOI data include physical oceanographic, chemical, acoustical, and other measures of physical and ecosystem variability. My work focuses on improving these measurements so that they better meet researchers’ needs for accuracy, sampling resolution, reliability, and data access.

Potential Projects: Review of OOI instrument data and comparison to other samples (bottles, shipboard measurements, satellite measurements etc.), exploration of the relationships between physical and biological data over the Oregon and Washington shelves; development of programming tools to help users import, view, and analyze oceanographic and meteorological data

Background/skills sought in an undergraduate: Interests in all aspects of shelf oceanography and ocean data; interests in going to sea and in oceanographic instrumentation; skills in programming (e.g., Python, Matlab)

Jennifer FehrenbacherJennifer Fehrenbacher

2010, Ph.D., University of Chicago, Department of Geophysical Sciences
2003, M.S., University of Chicago, Physical Sciences Division
1997, B.S., Northern Illinois University, Department of Geology

Interests: Tracer oceanography - My research involves components of trace element and stable isotope geochemistry, biomineralization, and marine biology. I develop and use proxies, primarily trace elements in marine calcifiers, for reconstructing ocean circulation, temperature, and chemistry in the past.

Potential Projects: Interested in learning about geochemistry, oceanography, and climate change? Learn how to use analytical tools (laser ablation ICP-MS and IRMS) to analyze the geochemistry of microscopic (sand-sized) marine calcifiers called foraminifera. The geochemistry of foraminifera ('forams' for short) is used to reconstruct ocean temperature and pH (and other environmental parameters). I have samples from several sediment cores and sediment traps that will be analyzed and the data obtained will be correlated to growth conditions. Fieldwork may be possible where you will learn to capture and grow living specimens in controlled laboratory conditions.

Background/skills sought in an undergraduate: Interest in geochemistry, oceanography, or climate change. Desire to learn laboratory methods and analytical tools such as laser ablation ICP-MS and IRMS. Experience with Excel, Matlab or R would be beneficial. Learn more about my lab here:

Jenny HutchingsJenny Hutchings

Ph.D., Remote Sensing, University College London
B.S., Physics, University College London

Potential Projects: We are looking for aspiring polar scientists with backgrounds in physics, mathematics, engineering or earth sciences to participate in a NASA funded project aiming to improve models of sea ice motion which may result in improved understanding of the drivers of recent Arctic sea ice changes. The Arctic Ocean sea ice cover has lost roughly half it’s mass over the last 30 years. This highly mobile and constantly evolving icescape insulates the Arctic Ocean from the atmosphere and radiates the suns energy back to space which, along with seasonal snowpack on adjacent continents and ice caps in Greenland and Antarctica, helps cool the planet. The loss of Arctic sea ice results in a positive feedback and participates in the amplification we see in surface temperature change within the Arctic over the last century. To start this feedback loop there needs to be a trigger, sea ice transport can precondition summer melt. You will investigate how this transport occurs in winter through analysis of sea ice cracking and subsequent deformation. Together with satellite remotely sensed imagery and drifting buoy data you can build a picture of the forces that result in sea ice motion. There is much to investigate, and a variety of projects we can offer ranging from structural analysis of sea ice making use of your geology background, satellite data analysis combined with ice drifting data to identify how sea ice drift responds to wind forcing and collation of these analyses to investigate if sea ice mass loss is impacting sea ice drift.

Background/skills sought in an undergraduate: Interest in the Earth’s polar regions and a background in physics, mathematics, engineering, or earth sciences

Jim LerczakJim Lerczak

2000, Ph.D., Oceanography, Scripps Institution of Oceanography, UC-San Diego
1991, M.S., Physics, University of Washington
1988, B.A., Physics, Williams College

Interests: Coastal physical oceanography including the study of internal waves and buoyant plumes from rivers; estuarine oceanography including the dynamics that drive the three-dimensional circulation and the mechanisms that transport and disperse water-borne materials in estuaries; physical/biological interactions which influence transport and dispersal of larvae.

Potential Projects: Analyze data to determine the transport of heat by coastal internal waves. Develop numerical tools to study transport and dispersion of water-borne materials by internal waves. Analyze data to quantify transport of sediments in an estuary. Analyze ocean measurements collected from tagged marine birds.

Background/skills sought in an undergraduate: Background and interest in physics. Experience in data analysis using programming/graphics software such as Matlab.

Ricardo LetelierRicardo Letelier

1994, Ph.D., Oceanography, University of Hawaii at Manoa
1988, B.S., Marine Biology, Universidad de Concepcion, Chile

Interests: Scales of response of marine pelagic microorganisms, populations, and communities to environmental perturbations; the role of these responses on biogeochemical cycles, primary productivity, nitrogen fixation, photosynthesis, chlorophyll passive (solar-induced) fluorescence; and the physical and chemical factors controlling these processes.

Potential Projects: Scales of variability of phytoplankton productivity in the coastal environments; the interpretation of phytoplankton passive fluorescence as measured from space, seasonal, and long-term changes in pelagic community structure in the North Pacific subtropical gyre with emphasis in phytoplankton production.

Background/skills sought in an undergraduate: Interest in learning about and applying remote sensing techniques to measure ocean productivity

Alan MixAlan Mix

1986, Ph.D., Geology, Columbia University (Lamont-Doherty Earth Observatory) New York, NY
1980, M.S., Geology, Columbia University (Lamont-Doherty Earth Observatory) New York, NY
1978, B.S., Geology (cum laude), University of Washington, Seattle, WA

Interests: Paleoceanography and Paleoclimatology, isotope geochemistry, micropaleontology

Potential Projects: : Around 20,000 years ago, the Columbia River basin and the Salish Sea were both occupied by southern lobes of the Cordilleran Ice Sheet (CIS). As the CIS retreated, there were profound changes in regional hydrology. River discharge carries freshwater diatoms into the ocean where they are preserved in marine sediments. The student involved in this REU project will sail on a 7-day research cruise on the R/V Oceanus from June 7th-13th 2020. They will assist in collection of sediment cores, and will prepare samples for micropaleontological analyses targeting likely flood events down-core. These data will be used to characterize changes in freshwater discharge and identify flood events on the continental margin since the last glacial maximum.

Background/skills sought in an undergraduate: Interest in sea-going field work on a research vessel, appreciation of mud, experience with or an interest in learning about marine micropaleontology, interest in Earth’s past climate.

Jonathan NashJonathan Nash

2000, Ph.D., Physical Oceanography, Oregon State University
1995, M.Sc., Environmental Engineering, Cornell University
1991, B.Sc., Engineering Physics, Queen's University at Kingston, Ont.

Interests: Exploring the physics of ocean turbulence and mixing to understand ocean dynamics using innovative instrumentation, detailed analysis, and dynamical models.

Potential Projects: Deployment of acoustic sensors near a glacier face using robotic boats to listen to the ice melt. The student would sort through some existing acoustic data, prepare equipment for the fieldwork, and hopefully participate in the fieldwork, which will be in the middle of August.

Background/skills sought in an undergraduate: The successful applicant will have a strong physics, geophysics or engineering background.

Clare ReimersClare Reimers

1982, Ph.D., Oceanography, Oregon State University
1978, M.S., Oceanography, Oregon State University
1976, B.S., Environmental Science, University of Virginia

Interests: Clare Reimers conducts research in biogeochemistry and chemical oceanography. Her lab group employs novel electrochemical methods to study how oxidation-reduction processes drive the carbon cycle in diverse marine environments. A major focus in recent years has been the use of aquatic eddy covariance methods to assess oxygen consumption rates by the seafloor across the Oregon shelf in all seasons. For another project, electrochemical devices placed across the sediment-water interface are being deployed to harvest low-levels of electricity to power sensors by using natural, continually renewed, chemical resources in sediment and at geochemical seeps as "fuel" and dissolved seawater oxygen as oxidant. This new technology functions like a microbial fuel cell, taking advantage of the voltage gradient that occurs in the top few centimeters of the sediment column.

Potential Projects: Interns working in Reimers lab would be engaged in both field and laboratory aspects of these and other interdisciplinary studies. They would be taught analytical techniques and given the opportunity to collect and interpret data sets that reveal spatial and temporal variation in biogeochemical processes. Students may also have the opportunity to go to sea on a research cruise on an oceanographic research vessel.

Mary SantelmannMary Santelmann

1988, Ph.D., Ecology, University of Minnesota
1980, M.S., Biology, University of Michigan
1978, B.S., Botany, University of Minnesota

Interests: 1. Ecosystem response to human land use and management practices; use of alternative future scenarios combined with diverse evaluative approaches. 2. Environmental and anthropogenic influences on species composition and species richness in agricultural, urban and wetland ecosystems, including effects of landscape composition and pattern on native biodiversity. 3. Ecology and biogeochemistry of wetlands and riparian systems.

Potential Projects: Sea-level rise is a documented and ongoing result of climate change. Current wetland restoration plans have the potential to be effective for a longer time if managers have accurate location data for existing habitats and can develop an informed understanding of where these habitats may exist under future conditions. The undergraduate on this project would assist in field work to accurately ground-truth edges of the Coos Bay estuary that have been initially delineated using LiDAR. The field work will involve boat surveys as well as surveys from land (where points are accessible from shore). Objectives of the field surveys are to assess the accuracy of LiDAR, identify locations of different estuarine vegetation communities, and to characterize substrate, environmental conditions, and vegetation communities associated with key locations in the estuary that are important as habitat for juvenile salmonid species. The undergraduate will assist the graduate student on the project in conducting the ground-truthing surveys.

Ground truthing will be accomplished using a laser level, digital compass, and high-resolution Algiz Global Positioning System Total Station. In addition, at specified locations, the REU student will help collect data on water depth, temperature, salinity, and substrate (for example, areas where the shoreline is rocky, sandy, marsh, eelgrass beds, lined with rip-rap etc.). These data will be useful in building relationships between environmental conditions and vegetation communities which can then be used to develop species-habitat models for juvenile Pacific salmon.

Background/skills sought in an undergraduate: Interest in using geospatial technology to detect changes in estuarine ecology

Adam SchultzAdam Schultz

1986, Ph.D., Geophysics, University of Washington
1995, M.A., Cambridge University (St. Edmund's College)
1979, B.S., Geology, Physics, Mathematics, Brown University

Interests: I study the formation and evolution of the Earth's crust and mantle from both a fundamental Earth Science perspective, and also for practical applications such as harnessing geothermal power, and for protecting critical infrastructure such as the power grid from risk due to interactions between the solar/geoospace environment and the solid Earth below. One area of particular interest is in applying geophysical methods based on electromagnetic principles to image the lithosphere and asthenosphere, to determine its physical and chemical state and to infer its geological history. We also target volcanic systems to study the relationship between deeper magma sources and shallower hydrothermal features. In addition to working on theoretical and computational problems, my lab is heavily involved in the practical aspects of designing and operating new instruments for terrestrial and seafloor observatory programs.

Potential Projects: I direct a long-running NSF and NASA funded continental scale magnetotelluric (MT) program to determine the 3-D electrical structure of North America’s crust and mantle and also lead a number of other field projects employing this electromagnetic imaging method to determine the structure, geologic properties and fluid content of the Earth's crust and mantle. An MT instrument measures the variations over time of the Earth's electric and magnetic fields, which provides information we use to construct 3-D images of the electrical conductivity structure beneath the surface of the investigation area. Each summer field season we also deploy a relocatable array of such stations across large regions of the US, as well as around specific targets of geodynamic interest.

As the arrays progress across the country, the data we produce is used to develop increasingly comprehensive images of the electrical conductivity structure of the North American crust and mantle. Conductivity is a very sensitive indicator of the presence of magmatic and aqueous fluids; it is sensitive to the temperature and compositional variations within different regions of the crust and mantle, and it is also an important tool for studying the distribution of volatile compounds within the Earth. We employ both professional and student crew members to install and operate our network of MT instruments. We are presently building a new generation of MT instruments and there may be opportunities for REU students to become involved in field deployments in the Pacific Northwest, as well as in laboratory calibrations and testing of new electric and magnetic field sensors.

Background/skills sought in an undergraduate: Background in physics, math, engineering or geology. Interest in field work or laboratory-based sensor development and testing.

Kip ShearmanKip Shearman

1999, Ph.D., Oceanography, Oregon State University
1993, B.S., Aeronautical Engineering, University of Colorado

Interests: My research interest is the study of physical processes in coastal ocean. Big, small, long, short, high-frequency, low-frequency, stratified, unstratified, rotating, nonrotating, forced, unforced, surface, bottom, middle - I don't care. If it's physics and coastal, I'm interested. I am most interested in understanding the dynamics of the evolving structure of the density field over the shelf. How it is affected by external forcing and how it in turn affects the circulation within the coastal ocean. My approach is observational, using innovative sampling techniques - such as Autonomous Underwater Vehicles (AUVs) - coupled with modeling and analysis, to explain fundamental physical processes.

Potential Projects: Oregon Shelf Glider Endurance Observation: Since 2006, we have maintained a small fleet of AUV gliders operating on the Oregon shelf sampling the temperature, salinity and velocity structure during the entire year.

Submesoscale Dynamics: Coordinated ship-based and and AUV glider-based surveys of fronts in the ocean. We are studying the finescale interleaving of warm, salty water and cooler, fresher water, focusing on frontal processes that occur in the presence of strong wind-forcing and extremely energetic internal waves (tides or inertial). We have data collected at locations all over the world: Gulf Stream, Taiwan, Vietnam, Gulf of Mexico ...

Background/skills sought in an undergraduate: Interest in AUV sampling, data analysis, programming (matlab or python), math and physics coursework.

Alyssa ShielAlyssa Shiel

2010, Ph.D., Oceanography, University of British Columbia
2003, B.S., Environmental Science, University of Arizona

Interests: sources, transformations, transport, and fate of metals in the environment; natural and disturbed biogeochemical cycles of metals; development of new geochemical tools; environmental archives.

Potential Projects: Potential projects in Dr. Shiel's lab include evaluating the impact of smelter emissions in Washington and British Columbia; determining the impact of trains, including open coal cars, on local metal levels; examining the importance of historic mining operations on environmental mercury and arsenic concentrations; and accessing metal levels and sources in the Columbia River Gorge and other natural areas in the Pacific Northwest. REU students working with Dr. Shiel will gain experience sampling environmental archives, such as lichens and soil, preparing samples for analysis, measuring metal concentrations and isotopic compositions, and interpreting and presenting their results.

Background/skills sought in an undergraduate: Dr. Shiel is looking for students who are excited about these types of research projects, enjoy spending time both in the lab and the field, have some background in chemistry, and are seeking hands-on experience with analytical techniques, such as ICP-MS.

Joe StonerJoe Stoner

1995, Ph.D., Resources Minérales, Université du Québec à Montréal
1991, M.S., Geology, University of Florida
1987, B.S., Geology, University of Florida

Interests: Sediments magnetism including paleomagnetism, environmental magnetism, geomagnetism, sedimentology, stratigraphy, paleoclimatology, paleoceanography.

Potential Projects: At the end of the last ice age regional sediment supply to the marine environment was dominated by material sourced from drainage of the southern Cordilleran Ice Sheet (CIS). Accumulation of material in the marine environment changed both in character and composition during and after the ice sheet retreat. The student involved in this REU project will sail on a 7-day research cruise on the R/V Oceanus from June7th-13th, 2020. The student will assist in the collection of sediment cores, and collection of physical properties and CT-scan imagery data. These data will be used to generate a basic stratigraphy for recovered cores, informing on how the lithology and depositional environment on the margin has changed since the last glacial maximum.

Background/skills sought in an undergraduate: Interest in sea-going field work on a research vessel, appreciation of mud, experience with or an interest in learning about sedimentary geology, interest in Earth’s past climate and/or magnetic field.

Anne TréhuAnne Tréhu

1982, Ph.D., Marine Geophysics, MIT-WHOI Joint program
1975, B.A., Geosciences, Princeton University

Interests: Application of geophysical data to geodynamic processes along plate boundaries; seismic data acquisition and processing.

Potential Projects: I am a seismologist interested in subduction zone earthquakes and their relationship to crustal structure in Cascadia and Chile. The student selected for this project will have the opportunity to participate in a major field program in the Oregon and Washington coast ranges, where we will be installing hundreds of seismometers to record sources from a ship that is collecting seismic reflection data. The objective of the experiment is to image the structure of the plate boundary in the region where great earthquakes are initiated. The student’s research project will entail processing some of these data or processing data from similar experiments offshore Chile in 2016 and 2017.

Background/skills sought in an undergraduate: At least one year of calculus-based physics and math is required. Courses in differential equations and linear algebra and experience programming in Matlab are recommended.

Mo WalczakMaureen (Mo) Walczak

2011, Ph.D., Oceanography, Oregon State University
2006, M.S., Oceanography, University of Washington
2004, B.S., Earth and Space Sciences, University of Washington
2004, B.S., Oceanography, University of Washington

Interests: Application of stable isotopes, trace element ratios, and radiogenic isotopes in marine sediments for palaeoenvironmental reconstructions and sediment depositional histories. Geochemical and paleomagnetic studies of marine sediments. Investigating deglacial changes in meltwater input, stratification, and biogeochemical cycling in high-latitude environments.

Potential Projects: At the last glacial maximum, the Salish Sea was occupied by the Puget Lobe of the Cordilleran Ice Sheet (CIS). Runoff from the southern margin of the ice was routed to the ocean through a now defunct river system. At some point during glacial retreat, the drainage connecting southern Puget Sound to the Pacific was abandoned. The student involved in this REU project will participate on a 7-day research cruise from June 7th-13th 2020. They will assist in collection of marine sediment cores, and will prepare samples for micropaleontological analyses. The student will learn to identify foraminiferal species, and will use those data to characterize environmental changes in the Pacific Ocean associated with the retreat of the adjacent Puget Lobe.

Background/skills sought in an undergraduate: Interest in sea-going field work on a research vessel, appreciation of mud, experience with or an interest in learning about sedimentology and micropaleontology, interest in Earth’s past climate.

George WaldbusserGeorge Waldbusser

2008, Ph.D., Biological Oceanography, University of Maryland
2002, M.S., Biological Oceanography, University of Connecticut
1999, B.S., Environmental Science, St. John's University, NY

Interests: Ocean Acidification Impacts on Shellfish, and Benthic Ecology and Biogeochemistry.

Potential Projects: Dissolution dynamics of oyster shell in Oregon estuaries. Oyster shell provides critical habitat for recruitment of new individuals to the population. However, little is known about the the lifetime of oyster shell in estuaries and the critical thresholds of population size, recruitment rates, and environmental conditions that ensure that the rate of new shell accretion exceeds loss. The project would entail measuring rates of shell dissolution and quantifying physical and geochemical characteristics of shell material.

Background/skills sought in an undergraduate: Interest in chemistry and method development

Greg WilsonGreg Wilson

2013, Ph.D., Oceanography, Oregon State University
2009, M.S., Oceanography, Oregon State University
2006, B.S., Physics and Computer Science, University of Victoria, Canada

Interests: I study the physics of fluid and sediment dynamics, primarily as it applies to the reshaping of ocean coasts by waves and currents. I'm developing new techniques to make quantitative measurements in the harsh nearshore environment, as well as ways to combine such measurements with models in order to improve understanding and forecasts.

Potential Projects: I'm looking for students with strong quantitative skills and an interest in ocean physics, to assist in data collection and analysis of hydrodynamic and sediment transport processes in the surf zone. The successful candidate will participate in preparation and deployment of instruments in a late-summer field experiment, focusing on a particular experimental aspect or hypothesis such as: (1) quantifying wave breaking using video remote sensing; or (2) testing new data processing techniques for acoustic sonar measurements of the bottom boundary layer under waves. Either project will use/build skills in signal processing, programming (e.g. Matlab, Python, C, Verilog), and field experimental methods.

Background/skills sought in an undergraduate: The ideal candidate will be interested in physics/math as they apply to environmental sciences, and have some experience with computer programming. Students should be comfortable with working hands-on in a laboratory and outdoors in the field.