Justin Wettstein

Associate Professor

Office: 541-737-5177

Burt Hall

Burt Hall 314

2651 SW Orchard Avenue

2651 SW Orchard Avenue
Corvallis, OR 97331

Profile Field Tabs

Brief Research Interests: 

Large-scale and long-term climate and atmospheric dynamics, climate variability and change, climate impacts and responses in natural and human-managed systems



Large-scale / long-term climate and atmospheric dynamics

Climate variability and change

Climate impacts and responses in natural and human-managed systems

Research Interests

Climate science; atmospheric general circulation; coupled atmosphere-ocean-ice processes; modern, future, and paleoclimate dynamics; polar climatology; statistical methods; climate and nature; climate and society; interactions across time and space scales; kinetic, thermodynamic, and integrated perspectives on climate variability and change processes

Current Research

My research interests are generally in the area of climate dynamics and, somewhat more specifically, on the range of processes that influence the large-scale atmospheric circulations.  My overall research activities are currently organized into the following four research themes:

1) Processes in the three-dimensional budget of atmospheric momentum: Some common approaches to characterizing variability and change oversimplify and blur the richness of three-dimensional structures in the atmospheric flow.  My research interest in this area is to objectively focus our view of regional and global-scale atmospheric variability and change over a wide range of time scales using observations and climate model experiments.  A key motivation is to ascribe physical interpretations to associated spatial and temporal variability in the atmospheric momentum budget.  Current work: 1a) begins to attribute various spatial and temporal atmospheric flow variability to particular processes and 1b) investigates how wave-mean flow and wave-wave interactions play out in the evolution of the North Pacific atmopsheric flow.

2) Enhancing our mechanistic understanding of ocean-ice-atmosphere interactions: Observations and many climate model projections of the future indicate a number of consistent changes to various components of the anthropogenically-forced coupled climate system (e.g., Arctic sea ice, storm tracks, ocean circulation).  Investigating the temporal covariabiilty is a necessary first step to explore interesting interactions, but is insufficient to explore mechanistic interactions between different climate system components.  My research interest in this area applies additional analysis constraints to more clearly examine physical processes associated with these interactions.  Some specific examples of current work include: 2a) isolating the atmospheric response to Arctic sea ice loss in observations and coupled models, 2b) characterizing large-scale variability in the atmospheric circulation over the North Pacific and its influence on the surface ocean (as well as on fish and biogeochemistry), and 2c) quantifying the impact of tropical atmospheric heating, its supply from the surface ocean and radiative sources, and its influence on the extratropical atmospheric circulation.

3) Climate dynamics in a paleo context: Past changes to the geography, topography, bathymetry, and atmospheric composition led to fundamental reorganizations of the climate system in general and to the atmospheric circulation in particular.  By investigating robust indicators of paleoclimate from proxy-based records and comparing these with fully-coupled model experiments, we can explore not only the climates of the distant past, but also our own understanding of modern and future climate system sensitivity.  My research interest in this area is focused on large paleoclimate changes implied by proxy indicators and on model experiments with very different radiative properties.  My goal in this work is to examine the robustness of our observationally-based understanding of the atmospheric general circulation.  Current work attempts to: 3a) ascribe particular patterns of ice core variability to atmospheric or oceanic pathways of change and 3b) quantitatively assess the thermodynamic and dynamic contributions to moisture transport in paleoclimate simulations with very different boundary condition forcing.

4) Climate, society, and efficient public policy: Climate variability and change imply a sequence of costs and benefits that accrue to different stakeholders at disparate points in time.  Climate mitigation and/or adaptation policies also convey time-varying social costs (or benefits), but are designed to decrease the negative (or increase the positive) impacts of climate variability and change.  In this simple framework, economically-efficient climate policy would consider the net present value of these two streams of costs and benefits to deliver the overall least-cost (or greatest-benefit) societal outcome.  My research in this area applies various methods to explore coupled climate-economic interactions in a variety of managed systems using observations and models.  This work is inherently collaborative and greatly enriched by partnerships with experts in related fields.  Current work focuses on the coupled interaction of climate with renewable and conventional energy supply and demand.

Current research projects:

Atmospheric jet variability: Linking Structure, Evolution, and Mechanisms (jetSTREAM), in collaboration with PI Camille Li

Trans-Arctic Change: Extending Interdisciplinary Collaborations on the Environment (TRACEICE), in collaboration with co-PI Lars Henrik Smedsrud

Dynamics of Arctic-Midlatitude Teleconnections: Mechanisms, Robustness, and Tropical Modulation (DYNAMITE), in collaboration with co-PIs Camille Li and Stefan Sobolowski

Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores, in collaboration with PI Christo Buizert

If you are a prospective graduate student or post-doc and are interested in research related to the categories above (or in atmospheric science in general), please feel free to get an overview of our program here or make contact with me directly.


Ph.D.  Atmospheric Sciences,  University of Washington  (2007)
M.P.A.  Evans School of Public Affairs,  University of Washington  (2007)
M.S.  Atmospheric Sciences,  University of Washington  (2003)
M.S.  Environmental Engineering and Science,  Stanford University  (1998)
B.S.  Environmental Engineering,  University of Oklahoma  (1997)

Graduate Students

Francesco S. R. Pausata, Ph.D. (2010) Geophysical Institute, University of Bergen [co-advisor]

Kristen Ravnestad, M.S. (2010) Geophysical Institute, University of Bergen [co-advisor]

Solbjørg Apeland, M.S. (2010) Geophysical Institute, University of Bergen [co-advisor]

Svetlana A. Sorokina, Ph.D. (2014) Geophysical Institute, University of Bergen [co-advisor]

Joshua Cuzzone, Ph.D. (2014) CEOAS, Oregon State University [committee member]

Sihan Li, Ph.D. (2017) CEOAS, Oregon State University [committee member]

Michael (Mike) Kula, M.S. (2017) CEOAS, Oregon State University [primary advisor]

Kaleb Horlick, M.S. (2018) CEOAS, Oregon State University [committee member]

Kathie Dello, Ph.D. student: School of Public Policy, Oregon State University [committee member]

John Paul Bigouette, Ph.D. student: School of Public Health, Oregon State University [committee member]

Matthew Koszuta, M.S. student: CEOAS, Oregon State University [co-advisor]


Adjunct Associate Professor in Large-scale Atmospheric Dynamics: Geophysical Institute, University of Bergen (Norway)

Affiliate faculty: School of Public Policy (Oregon State University)

Affiliate faculty: Water Resources Graduate Program (Oregon State University)


Student publications are underlined.

# denotes that these authors contributed equally to the publication

Wettstein, J.J.  The Evolution, Persistence, and Dynamical Forcing of North Pacific Jet Variability by Transient and Quasi-stationary Rossby Waves.  Manuscript in preparation: Journal of the Atmopsheric Sciences.

Wettstein, J.J., C. Li, and S. Bradshaw.  Robust and Dynamically Intuitive Three-dimensional Structures in Low-frequency Atmospheric Flow Variability.  Manuscript in preparation: Journal of Climate.

Wettstein, J.J. and M. Kula.  Twenty-first Century Arctic Sea Ice Loss: The Coupled Surface Energy Budget Response and Two Positive Feedbacks.  Manuscript in preparation: Journal of Climate.

Wettstein, J.J. and C. Li.  Differences Between Low-frequency Jet and Pressure Variability in the Extratropical Troposphere.  Manuscript for submission: Journal of Climate.

Li, S., D.E. Rupp, P.W. Mote, J.J. Wettstein, and F. Otto.  Correctly Interpreting Regional Climate Change Projections.  Submitted: Climate Dynamics.

Madonna, E., C. Li, and J.J. Wettstein, 2019.  Suppressed Eddy Driving during Southward Excursions of the North Atlantic Jet on Synoptic to Seasonal Time Scales.  Atmospheric Science Letters 20:e937.  DOI: 10.1002/asl.937.

Litzow, M.A., L. Ciannelli, P. Puerta, J.J. Wettstein, R.R. Rykaczewski, and M. Opiekun, 2019.  Nonstationary Environmental and Community Relationships in the North Pacific Ocean.  Ecology 100: e02760.  DOI: 10.1002/ecy.2760.

Li, S., D.E. Rupp, L. Hawkins, P.W. Mote, D. McNeall, S.N. Sparrow, D.C.H. Wallom, R.A. Betts, and J.J. Wettstein, 2019.  Reducing Climate Model Biases by Exploring Parameter Space with Large Ensembles of Climate Model Simulations and Statistical Emulation.  Geoscientific Model Development 12: 3017-3043.  DOI: 10.5194/gmd-12-3017-2019.

Buizert, C., M. Sigl, M. Severi, B.R. Markle, J.J. Wettstein, J.R. McConnell, J.B. Pedro, H. Sodemann, K. Goto-Azuma, K. Kawamura, S. Fujita, H. Motoyama, M. Hirabayashi, R. Uemura, B. Stenni, F. Parrenin, F. He, T.J. Fudge, and E.J. Steig, 2018.  Abrupt Ice-age Shifts in Southern Westerly Winds and Antarctic Climate Forced from the North.  Nature 563: 681-685. DOI: 10.1038/s41586-018-0727-5.

Litzow, M.A., L. Ciannelli, P. Puerta, J.J. Wettstein, R.R. Rykaczewski, and M. Opiekun, 2018.  Non-stationary climate-salmon relationships in the Gulf of Alaska.  Proceedings of the Royal Society B (Biological Sciences) 20181855.  DOI: 10.1098/rspb.2018.1855.

Koenigk, T., Y. Gao, G. Gastineau, N. Keenlyside, T. Nakamura, F. Ogawa, Y. Orsolini, V. Semenov, L. Suo, T. Tian, T. Wang, J.J. Wettstein, and S. Yang, 2018.  Impact of Arctic Sea Ice Variations on Winter Temperature Anomalies in Northern Hemispheric Land Areas.  Climate Dynamics 1432-0894.  DOI: 10.1007/s00382-018-4305-1.

Li, C., C. Michel, L.S. Graff, I. Bethke, G. Zappa, T.J. Bracegirdle, E. Fischer, B.J. Harvey, T. Iversen, M.P. King, H. Krishnan, L. Lierhammer, D. Mitchell, J. Scinocca, H. Shiogama, D.A. Stone, and J.J. Wettstein, 2018.  Midlatitude Atmospheric Circulation Responses under 1.5 and 2.0°C Warming and Implications for Regional Impacts.  Earth System Dynamics 9: 359-382.  DOI: 10.5194/esd-9-359-2018.

Tandon, N.F., P.J. Kushner, D. Docquier, J.J. Wettstein, and C. Li, 2018.  Reassessing Sea Ice Drift and its Relationship to Long-term Arctic Sea Ice Loss in Coupled Climate Models.  Journal of Geophysical Research-Oceans 123: 1-22.  DOI: 10.1029/2017JC013697.

Ciasto, L.M., C. Li, J.J. Wettstein, and N.G. Kvamstø, 2016.  North Atlantic Storm-Track Sensitivity to Projected Sea Surface Temperature: Local versus Remote Influences.  Journal of Climate 29: 6973-6991.  DOI: 10.1175/JCLI-D-15-0860.1.

Sorokina, S. A., # C. Li, # J.J. Wettstein, and N.G. Kvamstø, 2016.  Two-way Coupling Between Barents Sea Ice and Anomalous Eurasian Winters. Journal of Climate 29: 495-511.  DOI: 10.1175/JCLI-D-15-0046.1.

Wettstein, J.J. and C. Deser, 2014.  Internal Variability in Projections of Twenty-First-Century Arctic Sea Ice Loss: Role of the Large-Scale Atmospheric Circulation. Journal of Climate 27: 527-550.  DOI: 10.1175/JCLI-D-12-00839.1.

# Li, C. and # J.J. Wettstein, 2012.  Thermally-driven and Eddy-driven Jet Variability in Reanalysis. Journal of Climate, 25: 1587-1596.  DOI: 10.1175/JCLI-D-11-00145.1.

Wettstein, J.J., J.S. Littell, J.M. Wallace and Z. Gedalof, 2011.  Coherent Region-, Species- and Frequency-Dependent Local Climate Signals in Northern Hemisphere Tree-Ring Widths.  Journal of Climate, 24: 5998-6012.  DOI: 10.1175/2011JCLI3822.1.

Pausata, F.S.R., C. Li, J.J. Wettstein, M. Kageyama and K.H. Nisancioglu, 2011.  The Key Role of Topography in Altering North Atlantic Atmospheric Circulation during the Last Glacial Period.  Climate of the Past, 7: 1089-1101.  DOI: 10.5194/cp-7-1089-2011.

Athanasiadis, P.J., J.M. Wallace and J.J. Wettstein, 2010.  Patterns of Wintertime Jet Stream Variability and their Relation to the Storm Tracks.  Journal of the Atmospheric Sciences 67: 1361-1381.  DOI: 10.1175/2009JAS3270.1.

Wettstein, J.J. and J.M. Wallace, 2010.  Observed Patterns of Month-to-Month Storm Track Variability and their Relationship to the Background Flow.  Journal of the Atmospheric Sciences 67: 1420-1437.  DOI: 10.1175/2009JAS3194.1.

Pausata, F.S.R., C. Li, J.J. Wettstein, K.H. Nisancioglu and D.S. Battisti, 2009.  Changes in Atmospheric Variability in a Glacial Climate and the Impacts on Proxy Data: A Model Intercomparison.  Climate of the Past 5: 489-502.  DOI: 10.5194/cp-7-1089-2011.

Wettstein, J.J. and L.O. Mearns, 2002.  The Influence of the North Atlantic--Arctic Oscillation on Mean, Variance and Extremes of Temperature in the Northeastern United States and Canada. Journal of Climate 15: 3586-3600.  DOI: 10.1175/1520-0442.