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One of the most significant consequences of climate warming is the
likely change in streamflow as a result of warming air temperatures.
Hydrologists have responded to the challenge of understanding these
effects. Many recent studies quantify historical trends in streamflow and
usually attribute these trends to climate warming, via altered evapotran-
spiration and snowpack (Figure 1.a). However, without questioning the
fundamental reality of a warming climate, hydrologists should also con-
sider biotic and social processes whose omission may produce misleading
interpretations about climate change effects on hydrology. The aim of
this commentary is to raise awareness of ecological and social processes
that may confound the interpretation of climate effects on hydrology, to
review how the geographic context of streamflow records affects inter-
pretation of the climate signal, and to suggest a ‘checklist’ of working
hypotheses that can be used to structure studies of streamflow responses
to climate change.

A wide variety of trends in streamflow have been detected and
attributed to climate change and variability, but a few themes dominate
the literature. The most common studies report earlier snowmelt,
a shift to earlier streamflow timing, altered spring maximum flows,
and/or intensified summer drought (Adam et al., 2009; Barnett et al.,
2008; Brabets and Walvoord, 2009; Burn et al., 2010; Cuo et al., 2009;
Hamlet et al., 2007; Hodgekins et al., 2003; Hodgekins and Dudley,
2006; Huntington et al., 2004; Jefferson et al., 2008; Knowles et al.,
2006; Lee et al., 2004; Mote et al., 2003; Shepherd et al., 2010; Stew-
art et al., 2005; Stewart, 2009; Wilson et al., 2010; Xu et al., 2009).
These studies focus on mountainous regions or near-polar latitudes
of the Northern Hemisphere, and the relationships among warming,
snowmelt, and streamflow vary with geographic location, elevation,
and latitude. Another frequent finding is a trend of increased stream-
flow (annual, winter, and/or spring) associated with increased precip-
itation or temperature, or both (Andreadis and Lettenmaier, 2006;
Birsan et al., 2005; Chen et al., 2006; Gautam et al., 2010; Johnston
and Schmagin, 2008; Lins and Slack, 1999; Liu et al., 2010; Milliman
et al., 2008; Peterson et al., 2002; St. George, 2007; Wilson et al., 2010;
Xu et al., 2009; Zhang et al., 2001; Zhang and Schilling, 2006). The
flow quantiles affected vary, with some studies reporting increased low
flows (Liu et al., 2010) while others project increased flood risk (Alla-
mano et al., 2009, but see Wilby et al., 2008). The climate-streamflow
trend literature also contains considerable discussion of methods. Most
studies use the Mann-Kendall non-parametric test (Hirsch and Slack,
1984; Helsel and Hirsch, 2002). Moreover, there is broad recogni-
tion that trends can be confounded with long-term climate cycles
(Burn, 2008; Huntington et al., 2004; Lee et al., 2004; Marengo, 2009;
St. George, 2007; Weider and Boutt, 2010; Woo et al., 2006) and
that trends are sensitive to the start date of the record (e.g. Wilby
et al., 2008). These latter issues are not addressed in this commentary.
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Three factors may produce misleading interpreta-
tions about climate change effects on hydrology. These
factors, which are relevant to interpretations from
statistical analyses as well as models of streamflow
trends are: (i) vegetation responses to past distur-
bances, (ii) vegetation responses to climate variability,
and (iii) changes in human water use associated with
water management infrastructure, human behaviour
and population growth (Figure 1.b–d.).

Vegetation responses to past disturbances may pro-
duce gradual trends in water yield that may be
misconstrued as climate change effects (Figure 1.b).
Past disturbances may be anthropogenic, such as for-
est management and land use conversions, or ‘natu-
ral’ disturbances including fire, windthrow, volcanic
eruption, and insect outbreaks. Most hydrologists are
familiar with the idea that vegetation treatments influ-
ence streamflow, but the effect of succession following
disturbance in watersheds labeled as ‘unregulated’,
‘reference’, or ‘control’ is less recognized. Neverthe-
less, vegetation change is continual and these changes
have the potential to produce streamflow trends. For
example, in New England (Hubbard Brook), forest
harvest shifted snowmelt and peak streamflow to sev-
eral weeks earlier while three to four decades of forest
regeneration shifted snowmelt and streamflow back
by several weeks (Jones and Post, 2004). Cumula-
tive forest clearing associated with exurban expansion
may therefore also influence the timing of snowmelt
and peak streamflow, but be misconstrued as climate
change effects. Gradual forest succession may reduce
streamflow in ‘reference’ watersheds that were dis-
turbed in the past, as shown by gradual decreases in
summer streamflow several decades after replacement
of older forest with young forest plantations (Hicks
et al., 1991; Swank et al., 2001; Hornbeck et al., 1997;
Jones and Post, 2004), as well as by declining stream-
flow after conversion of deciduous to conifer for-
est (Swank et al., 1988). Gradual forest succession
after fire, windthrow, insect outbreaks, or volcanic
disturbances also may produce gradual increases or
decreases in streamflow (e.g. Major and Marks, 2006;
Scatena et al., 1996; Swank and Crossley, 1988). Thus,
changes in forest species and age classes in both man-
aged and unmanaged forests may produce changes

(a)

Figure 1.a. Many studies of streamflow response infer a direct rela-
tionship between climate change, snowpack and evapotranspiration,

and water availability to downstream human users

in streamflow that are similar in rate and magni-
tude to those that have been attributed directly to
climate change. Many ‘unregulated’ streamflow gages
are downstream of forests, so trends in streamflow
from these locations may be the result of climate
change, responses to past forest disturbances, or both.
As record lengths at many ‘reference’ or ‘control’
watersheds become long enough to detect climate-
related trends, they also are likely to capture effects
of vegetation succession.

Vegetation responses to climate variability may per-
mit ecosystem water use to be resilient to stresses
associated with climate warming, resulting in no
streamflow response to changing climate (Figure 1.b).
Vegetation responses occur at multiple temporal
and ecological scales, ranging from the leaf to the
ecosystem, and the second to the century. Drought
adaptations (e.g. stomatal conductance, Farquhar
and Sharkey, 1982) permit certain species or plant
functional types to limit transpiration in response
to increased temperature or vapor pressure (e.g.
Schwinning and Ehleringer, 2001). As a result,
drought may produce relatively small interannual
changes in stand-level transpiration (Oishi et al.,
2010). This phenomenon is consistent with the find-
ing that evapotranspiration may be nearly invariant
at the interannual timescale in undisturbed water-
sheds, as shown by the strong linear relationship
between annual precipitation and streamflow evident
in a range of diverse undisturbed forest ecosystems
(Post and Jones 2001). Moreover, over successional
time scales, vegetation mortality (e.g. van Mantgem
et al., 2009) may help maintain relatively constant
whole-ecosystem transpiration. Thus, ecosystems have
multiple mechanisms to adjust to changes in temper-
ature and moisture, which may result in no detectable
trends in streamflow even when climate is changing.

It has long been recognized that human actions
influence streamflow, and these influences may con-
found interpretations of climate change effects in
many ways (Figure 1.c). Changes in human water use
include effects of infrastructure for water manage-
ment, such as flood control and water supply, as well
as changes in human land use, population density, and
behaviour. Structures such as dams, reservoirs, and
canals have influenced the timing, and perhaps the
magnitude, of streamflow in many locations by stor-
ing and withdrawing water from streams in one loca-
tion or time period, and returning it to the system at
another location and/or in another time period. Glob-
ally streamflow trends are quite different in managed
versus unmanaged rivers (Milliman et al., 2008). In
many regions of the USA, accumulated storage capac-
ity in reservoirs over the period since 1940 (Graf,
1999) and dam operations for flood control and irri-
gation have decreased maximum flows and increased
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(b)

Figure 1.b. Vegetation responses to past disturbances can produce gradual trends in ET and snowpack that may be misconstrued as climate
change effects

minimum flows (Poff et al., 2007).Agriculture and
urbanisation may produce increasing or decreas-
ing trends in streamflow. For example, groundwater
pumping and supplemental dry season irrigation has
increased lowflows in the US high plains (Kustu et al.,
2010). In the US Midwest, summer lowflows have
declined but winter lowflows have increased in water-
sheds dominated by irrigated agriculture, but both
summer and winter lowflows have increased over the
same period in watersheds dominated by increasing
urban water effluent discharge (Wang and Cai, 2010).
Similar trends are apparent near San Antonio in the
arid southwest of the USA, where streamflow over a
period of rapid urbanisation has declined upstream of
the city, but increased downstream (Sahoo and Smith,
2009), and in the northwest USA, where irrigation has
reduced flows over the past century in the Columbia
River (Naik and Jay, 2005). Landcover changes had
a greater effect on streamflow than climate in the
lowlands of a large river basin in the US Pacific
Northwest (Cuo et al., 2009). Thus, many forms of
gradual change in water infrastructure, management,
and human use have produced trends in streamflow
that may be correlated with, but not directly caused
by, climate change.

Geographic context determines the likelihood that
one or more of these biotic and social processes
(Figure 1.b–d.) confounds our ability to detect effects
of climate change on hydrology. The geography of
watersheds creates a paradox for studies of climate
change effects on hydrology: to avoid the possible
effects of flow regulation as a confounding factor,
many studies utilize records from rivers that are
‘unregulated’ (lacking dams). However, these are typ-
ically low-order, headwater drainage basins often far
removed from human populations: 317 undammed

(c)

Figure 1.c. Vegetation responses to climate variability can produce
no change in streamflow, despite climate change

(d)

Figure 1.d. Changes in human water use through infrastructure
and water management, human population and behavior influence
streamflow trends in ways that can be misconstrued as climate change

effects, even in “unregulated” basins

reference basins in the USA had a median drainage
area of 623 km2, and 89% of these basins were �5th
order (Poff et al., 2007). Climate-related streamflow
trends in these ‘unregulated’ basins may be over-
whelmed by vegetation responses to past disturbances,
or ecosystem adjustments to climate variability. Thus,
all records of streamflow reflect some combination of
factors that may confound interpretations of climate
change effects.

Perhaps the climate change hydrology literature
has focused on spring snowmelt because it is eas-
ier to detect than other climate change effects, which
may be more biologically or human mediated. Direct
climate warming effects on hydrology probably are
most readily detected from streamflow records near
glaciers or snowpacks whose melt behaviour is altered
by warming, but where streamflow is relatively little
affected by vegetation adaptations (e.g. above treeline,
or where flow is groundwater-dominated, see Jeffer-
son et al., 2008). Also, direct climate warming effects
on streamflow probably are most readily detected for
times of year in which vegetation is relatively unable
to respond (e.g. where snowmelt changes precede
leafout in deciduous forests, see Campbell et al., 2010).

Outside of these settings, vegetation responses to
past disturbances, climate variability, and changes
in human water use may be used as a checklist of
alternative hypotheses, in addition to the physical pro-
cess responses to climate change, to evaluate stream-
flow trends. Hydrologists can explore questions such
as: “How does the magnitude and timing of climate
change effects on streamflow compare with stream-
flow responses to vegetation disturbance?” “How do
climate change effects on hydrology in headwater
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basins compare with the streamflow responses to river
regulation, land use, or population change in the
downstream basins to which they contribute?” “What
regions might be expected to have the least/greatest
response of hydrology to climate change, given the
biotic, social, and climate factors?”

Consideration of climate change effects on hydrol-
ogy has led to reflection and renewal in hydrologic
research and may greatly enrich the domain of eco-
hydrology. To understand climate change, hydrolo-
gists are turning to long-term records as a source of
insights about a broad suite of hydrologic processes
and responses. Although analyses of past streamflow
trends have many limitations, when formulated with
appropriate consideration to multiple processes, such
analyses can greatly extend our understanding of the
multiple factors that influence water availability and
timing.
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