Oregon State University

Directory of People

Andrew Thurber

Andrew Thurber photo
Assistant Professor (Senior Research)

Discipline: Ocean Ecology and Biogeochemistry
Office: Burt 214
Phone: 541-737-4500
Fax: 541-737-2064
Email: athurber@coas.oregonstate.edu
Website

Specialty

Microbe-metazoan Interactions. Deep-Sea and Polar Ecology.  Food Web Dynamics. Deep-sea reducing habitats.  Annelid ecology.

Research Interests

I am interested in how cross-domain interactions impact ecosystem function in marine communities. Through using a variety of isotopic and molecular analyses I identify and quantify trophic linkages between metazoans and bacteria and archaea in soft sediment systems and how this impacts community structure and function.  

Current Research

My current research aims to quantify the impact of what metazoans (animals) eat on the many  biogeochemical processes archaea and bacteria mediate.  To answer these questions I work in two specific habitats that each allow a different approach when studying these interactions.

Deep-sea methane seeps:  Methane seeps provide an unique system in which a diversity of microbial populations are co-occur with a few families of infauna. Two of these microbial processes, the anaerobic oxidation of methane and aerobic methane oxidation, provide a key ecosystem service by consuming methane, a greenhouse gas 23x more effective at warming out atmosphere than CO2, before it can cause our planet to warm at an even greater rate than the CO2 that is being released.  Currently I am focused on the roll of a specific group of segmented worms that belong to the family Ampharetidae that I discover co-occur with some of the greatest methane emisson that we have ever seen.  The goal of this research is to identify if and how the ampharetids themselves are facilitating  increased methane emission.

Antarctic Spionid beds. The biota of the world's seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. My research in the antarctic will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. 

Education

2011 - Post Doctoral Fellow - Oregon State University
2010 - Ph.D. in Oceanography - Scripps Institution of Oceanography, UC San Diego
2005 - M.S. in Marine Science - Moss Landing Marine Labs, CSU- Stanislaus
2001 - B.S. in Marine Biology (minor:Mathematics) - Hawaii Pacific University

Courses

OC 407/507/607 Oceanography Seminar

Publications

Please email me for pdfs of any of these publications (athurber@coas.oregonstate.edu)

  1. Thurber AR. Accepted. Diet-dependant incorporation of biomarkers: Implications for food-web studies using stable isotope and fatty acid analyses with special application to chemosynthetic environments. Marine Ecology. 
  2. Zepata-Hernández G, Sellanes J, Thurber AR, Levin LA. 2014. Trophic Structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (~45oS).  Journal of the Marine Biological Association of the United Kingdon. 94: 659-669.
  3. Thurber AR, Sweetman AK, Narayanaswamy BE, Jones DOB, Ingels J., Hansman RL. 2013. Ecosystem function and services provided by the deep sea. Biogeosciences Discuss. 10: 18193–18240. goo.gl/wGNeiY
  4. Mora C, Wei C-L, Rollo A, Amaro T, Baco A R, Billett D, Bopp L, Chen Q, Collier M, Danovaro R, Gooday A J, Grupe B M, Halloran P R, Ingels J, Jones D O B, Levin L A, Nakano H, Norling K, Ramirez-Llodra E, Rex M, Ruhl H A, Smith C R, Sweetman A K, Thurber AR, Tjiputra J F, Usseglio P, Watling L, Wu T and Yasuhara, M. 2013. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biol, 11(10), e1001682, doi:10.1371/journal.pbio.1001682. goo.gl/NFZPck
  5. Bowden DA , Rowden AA, Thurber  AR, Baco AR, Levin LA, Smith CR. 2013. Cold Seep Epifaunal Communities on the Hikurangi Margin, New Zealand: Composition, Succession, and Vulnerability to Human Activities. PLoS ONE 8: e76869.  goo.gl/8pHlnQ
  6. Thurber AR, Levin LA, Rowden AA, Kröger K, Linke P, Sommer S. 2013. Microbes, Macrofauna, and Methane: The importance of aerobic methanotrophy in fueling a methane seep infaunal community. Limnology and Oceanography 58:1640-1656. doi:10.4319/lo.2013.58.5.1640 goo.gl/acb7jz
  7. Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K. 2013. Recruitment, Growth and Mortality of an Antarctic Hexactinellid Sponge, Anoxycalyx joubini. PLoS ONE. goo.gl/bduTjY
  8. Levin LA, Ziebis W, Mendoza G, Bertics VJ, Washington T, Gonzalez J, Thurber AR, Ebbe B, Lee RW. 2013. Ecological Release and Niche Partitioning Under Stress: Lessons from Dorvilleid Polychaetes in Sulfidic Sediments at Methane Seeps. Deep-Sea Research II. goo.gl/b0eyDu
  9. Zepata-Hernández G, Sellanes J, Thurber AR, Chazalon F, Levin LA, Linke P. 2013. New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~36º S). Marine Ecology. doi: 10.1111/maec.12051 goo.gl/TKshn4
  10. Vega Thurber R, Burkepile DE, Correa AMS, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S. 2012. Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. PLoS ONE 7(9): e44246 doi:10/1371/journal.pone.044246 goo.gl/IFKrTu
  11. Blackman DK, Appelgate B, German CR, Thurber AR, Henig AS. 2012. Axial Morphology along the Southern Chile Rise. Marine Geology 315-318: 58-63. goo.gl/wirfp4
  12. Bernardino AF, Levin LA, Thurber AR, Smith CR. 2012. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE. 7(4): e33515. doi:10.1371/journal.pone.0033515 goo.gl/lUicHG
  13. Thurber AR, Levin LA, Orphan VJ, Marlow JJ. 2012. Archaea in metazoan diets: implications for food webs and biogeochemical cycling. ISME J. doi:10.1038/ismej.2012.16 :1-11. goo.gl/F2kAYj
  14. Thurber AR, Jones WJ, Schnabel K. 2011. Dancing for food in the deep sea: Bacterial farming by a new species of Yeti crab. PLoS ONE. 6(11):e26243. DOI:10.1371/journal.pone.0026243 goo.gl/urzlpJ
  15. Kim S, Hammerstom KK, Conlan KE, Thurber AR. 2010. Polar ecosystem dynamics: Recovery of communities from organic enrichment in McMurdo Sound, Antarctica. Integrative and Comparative Biology. 50:1031-1040. goo.gl/dsm4Gq
  16. Conlan KE, Kim SL, Thurber AR, Hendrycks E. 2010. Benthic changes at McMurdo Station, Antarctica, following local sewage treatment and regional iceberg-mediated productivity decline. Marine Pollution Bulletin 60: 419-432. goo.gl/Kg15Sw
  17. Levin LA, Mendoza G, Gonzalez J, McMillan P, Thurber AR. 2010. Diversity of bathyal macrobenthos on the northeastern Pacific margin: the influence of methane seeps and oxygen minimum zones. Marine Ecology 34: 94-110. goo.gl/yYbGSn
  18. Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA. 2010. Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology 272:260-269. goo.gl/55fSgO
  19. Glover AG, Smith CR, Minks SL, Sumida PY, Thurber A. 2008. Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: Evidence for a sediment ‘food bank’ and similarities to deep-sea habitats. Deep-Sea Research II 55:2491-2501. goo.gl/BhOlw5
  20. Thurber AR. 2007. Diets of Antarctic sponges: links between the pelagic microbial loop and benthic metazoan food web. Marine Ecology Progress Series 351:77-89. goo.gl/kkBG1U
  21. Kim SL, Thurber A, Hammerstrom K, Conlan K. 2007. Seastar response to organic enrichment in an oligotrophic polar habitat. Journal of Experimental Marine Biology and Ecology 346:66-75. goo.gl/JJWCXi
  22. Kim SL and Thurber A. 2007. Comparison of seastar (Asteroidea) fauna across island groups of the Scotia Arc. Polar Biology 30:415-425. goo.gl/JOUbqe
  23. Detrich HW, Jones CD, Kim S, North AW, Thurber A, Vacchi M. 2005. Nesting behavior of the icefish Chaenocephalus aceratus at Bouvetoya Island, Southern Ocean. Polar Biology 28:828-832. goo.gl/vfXvIb

 

[ Log In to Edit ]