A speleothem record of Younger Dryas cooling, Klamath Mountains, Oregon, USA

David A. Vaccoa,*, Peter U. Clarkb, Alan C. Mixc, Hai Chengd, R. Lawrence Edwardsd

aDepartment of Geosciences, Pennsylvania State University, State College, PA 16802, USA
bDepartment of Geosciences, Oregon State University, Corvallis, OR 97331, USA
cCollege of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
dDepartment of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA

Received 9 November 2004
Available online 20 July 2005

Abstract

A well-dated $\delta^{18}O$ record in a stalagmite from a cave in the Klamath Mountains, Oregon, with a sampling interval of 50 yr, indicates that the climate of this region cooled essentially synchronously with Younger Dryas climate change elsewhere in the Northern Hemisphere. The $\delta^{18}O$ record also indicates significant century-scale temperature variability during the early Holocene. The $\delta^{13}C$ record suggests increasing biomass over the cave through the last deglaciation, with century-scale variability but with little detectable response of vegetation to Younger Dryas cooling.

Introduction

Climate records spanning the last deglaciation reveal several large and abrupt climate changes that may have been hemispheric or perhaps global in extent (Clark et al., 2002; Voelker et al., 2002). The mechanisms responsible for these events remain uncertain, but understanding their full spatial extent will provide insight into their origin, which represents an important objective because of the possible recurrence of analogous events in the future (Alley et al., 2003).

One strategy toward constraining potential mechanisms of abrupt climate change is to develop well-dated climate records with the temporal precision necessary to establish the regional amplitude and phasing of changes in the various components of the climate system. Many terrestrial records are of too low resolution, however, to identify abrupt climate changes. Moreover, the chronology of most climate records of the last deglaciation is based on radiocarbon, thus preventing firm correlations among records because of uncertainties in local reservoir ages and corrections for changing ^{14}C production rate as they propagate through the carbon cycle.

Speleothems circumvent many of these issues by providing high-resolution climate records with chronologies anchored by precise U-Th ages. Here, we develop a precisely dated isotope record ($\delta^{18}O, \delta^{13}C$) of the last deglaciation from a stalagmite recovered from the Klamath Mountains, southwestern Oregon (Fig. 1). Since the climate of the region is strongly influenced by the Pacific Ocean, this record is significant in providing one of the few precisely dated terrestrial records of Northeast Pacific climate variability during the last deglaciation.

Setting

The Oregon Caves National Monument (OCNM) is located 65 km inland of the Pacific coast of Oregon.

* Corresponding author.
E-mail address: dvacco@geosc.psu.edu (D.A. Vacco).

© 2005 University of Washington. All rights reserved.

Keywords: Stalagmite; Younger Dryas; Klamath Mountains
system. Average internal precision on carbonate analyses was ±0.02‰ and ±0.01‰ on δ18O and δ13C, respectively. External precision of replicate analyses of a local carbonate standard (Wiley marble) run daily on this system, in the same size range as the speleothem samples and over the same time interval, was ±0.06‰ for δ18O and ±0.02‰ for δ13C (±1 standard deviation, n = 722). Calibration to the widely used Vienna Pee Dee Belemnite (VPDB) standard was done via certified carbonate standards provided by the US National Institute of Standards and Technology (NIST). During the analysis period, the isotopic values and precision we obtained for NIST-8543 (also known as NBS-18 carbonatite) were −23.02 ± 0.11‰ for δ18O and −5.04 ± 0.04‰ for δ13C (n = 23), which compares with certified values of −23.05 ± 0.19‰ and −5.04 ± 0.06‰ for δ18O and δ13C, respectively (NIST, 1992a). The isotopic values and precision we obtained for NIST-844 (also known and NBS-19 limestone) were −2.19 ± 0.06‰ for δ18O and

(42°05’N, 123°25’W) (Fig. 1) at an elevation of ~1100 m above sea level. The cave system is developed in Triassic marble underlying the Klamath Mountains. The present-day cave air temperature averages about 7°C, varying only within narrow limits on a seasonal basis (Turgeon, 2001). The cave system reaches a depth of approximately 60 m below its main opening, and groundwater flows into the cave through the carbonate bedrock. Our sample was removed from the cave in the 1930s and was loaned to Oregon State University in 2000 for analysis.

Methods

We cut the OCNM stalagmite in half, parallel to the growth direction (Fig. 2). The polished stalagmite appears pristine, with no visible indication of post-depositional recrystallization. Calcite powder was milled for stable isotope measurements using a 350-μm drill bit, yielding ~100 μg of calcite. Oxygen and carbon isotope ratios were measured at Oregon State University using a Finnigan MAT 252 mass spectrometer and a Kiel-III online acid digestion system.
D.A. Vacco et al. / Quaternary Research 64 (2005) 249 – 256

Table 1

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Sample depth (mm) (from base)</th>
<th>238U (ppt)</th>
<th>232Th (ppt)</th>
<th>234U* (measured)</th>
<th>230Th/234U (activity)</th>
<th>230Th age (years) (uncorrected)</th>
<th>230Th age (years) (corrected)</th>
<th>234U initial***</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>196</td>
<td>115.0 ± 0.2</td>
<td>154 ± 20</td>
<td>89.1 ± 3.3</td>
<td>0.0584 ± 0.0015</td>
<td>6010 ± 160</td>
<td>5914 ± 160</td>
<td>23.6 ± 3.3</td>
</tr>
<tr>
<td>A7</td>
<td>158</td>
<td>134.2 ± 0.2</td>
<td>630 ± 13</td>
<td>102.5 ± 2.1</td>
<td>0.0965 ± 0.0011</td>
<td>9980 ± 130</td>
<td>9650 ± 140</td>
<td>23.4 ± 2.1</td>
</tr>
<tr>
<td>A9</td>
<td>147</td>
<td>126.9 ± 0.3</td>
<td>475 ± 12</td>
<td>111.9 ± 3.7</td>
<td>0.1062 ± 0.0015</td>
<td>10,950 ± 170</td>
<td>10,680 ± 170</td>
<td>115.3 ± 3.8</td>
</tr>
<tr>
<td>A12</td>
<td>147</td>
<td>127.6 ± 0.1</td>
<td>878 ± 12</td>
<td>110.4 ± 1.8</td>
<td>0.1096 ± 0.0010</td>
<td>11,330 ± 110</td>
<td>10,840 ± 150</td>
<td>113.8 ± 1.8</td>
</tr>
<tr>
<td>A13</td>
<td>147</td>
<td>126.1 ± 0.1</td>
<td>1832 ± 13</td>
<td>105.4 ± 1.8</td>
<td>0.1146 ± 0.0010</td>
<td>11,930 ± 120</td>
<td>10,880 ± 250</td>
<td>108.7 ± 1.8</td>
</tr>
<tr>
<td>A8</td>
<td>134</td>
<td>159.2 ± 0.3</td>
<td>2308 ± 13</td>
<td>129.4 ± 2.1</td>
<td>0.1224 ± 0.0011</td>
<td>12,500 ± 120</td>
<td>11,480 ± 240</td>
<td>133.7 ± 2.1</td>
</tr>
<tr>
<td>A10</td>
<td>134</td>
<td>164.8 ± 0.2</td>
<td>2590 ± 12</td>
<td>122.0 ± 1.5</td>
<td>0.1251 ± 0.0010</td>
<td>12,880 ± 110</td>
<td>11,770 ± 260</td>
<td>126.1 ± 1.6</td>
</tr>
<tr>
<td>A11</td>
<td>134</td>
<td>151.1 ± 0.2</td>
<td>2450 ± 17</td>
<td>99.0 ± 2.0</td>
<td>0.1237 ± 0.0013</td>
<td>13,020 ± 150</td>
<td>11,840 ± 290</td>
<td>102.4 ± 2.1</td>
</tr>
<tr>
<td>A6</td>
<td>129</td>
<td>103.1 ± 0.2</td>
<td>1317 ± 12</td>
<td>134.0 ± 3.0</td>
<td>0.1262 ± 0.0014</td>
<td>12,850 ± 160</td>
<td>11,960 ± 240</td>
<td>138.6 ± 3.2</td>
</tr>
<tr>
<td>A3</td>
<td>119</td>
<td>170.9 ± 0.3</td>
<td>433 ± 20</td>
<td>107.6 ± 2.5</td>
<td>0.1271 ± 0.0016</td>
<td>13,280 ± 170</td>
<td>13,100 ± 180</td>
<td>111.7 ± 2.6</td>
</tr>
<tr>
<td>A5</td>
<td>107</td>
<td>95.3 ± 0.1</td>
<td>2904 ± 16</td>
<td>109.4 ± 3.0</td>
<td>0.4778 ± 0.0031</td>
<td>60,860 ± 570</td>
<td>58,700 ± 720</td>
<td>129.1 ± 3.5</td>
</tr>
<tr>
<td>A2</td>
<td>96</td>
<td>208.8 ± 0.3</td>
<td>190 ± 20</td>
<td>89.4 ± 2.5</td>
<td>0.7381 ± 0.0041</td>
<td>120,750 ± 1330</td>
<td>120,690 ± 1330</td>
<td>125.7 ± 3.6</td>
</tr>
<tr>
<td>A1</td>
<td>23</td>
<td>81.0 ± 0.2</td>
<td>255 ± 20</td>
<td>130.7 ± 6.9</td>
<td>0.8060 ± 0.0062</td>
<td>131,230 ± 2600</td>
<td>131,020 ± 2600</td>
<td>189 ± 10</td>
</tr>
</tbody>
</table>

230Th age (years) = $k = 9.1577 \times 10^{-6} \cdot y^{-1}$, 234U = $2.8263 \times 10^{-6} \cdot y^{-1}$, 235U = $1.55125 \times 10^{-10} \cdot y^{-1}$.

234Uinitial was calculated based on 230Th age (T), i.e., 234Uinitial = 234Umeasured $\times e^{\left(234xT\right)}$.

234U initial is $= 100$, 230Th/234U is $= 1$.

234U/230Th isotope system has remained closed since 12.0 ± 2.5 × 10^-6 based on three-point isochron (A9, A12 and A13), without U corrections. The error in initial thorium isotopic composition and the analytical error, is about ±200 years. Most of this error comes from the uncertainty in our knowledge of initial thorium isotopic composition. Replicate analyses show excellent reproducibility, and the U-Th ages are in stratigraphic order (Table 1), indicating that the 234U/230Th isotope system has remained closed since calcite deposition.

Age model

Dating of speleothems from OCNM indicates that growth phases occurred primarily during terminations and interglacial phases occurred primarily during terminations and interglacials.
ciations (Table 1) (Turgeon, 2001). The U-Th ages from our studied stalagmite reveal that deposition occurred primarily during two periods: ~131 to 120 × 10³ yr ago, and since 13,300 yr ago, with a brief interval of deposition ~59,000 yr ago (Table 1). We constructed an age model for the last 13,300 yr using ten U-Th ages and assuming that the top of the stalagmite corresponds to year 0 (the stalagmite was collected in the 1930s) (Fig. 3). We focused our isotopic measurements on the best-dated interval (constrained by nine ages, including two intervals with three replicates each) between 13,300 yr ago and 9200 yr ago. During most of this time, calcite deposition rates ranged from 0.85 mm 100 yr⁻¹ to 1.5 mm 100 yr⁻¹, with a brief interval of 2 mm 100 yr⁻¹ (Fig. 3). Consequently, the number of years averaged in most samples for dating (2.5 mm in growth direction) is similar to the U-Th uncertainty (180–360 yr). We define our age model for stable isotope values by linear interpolation between dated intervals. Based on this age model, our stable isotope samples (nominally 400-µm holes) average variations over 30–60 years, with an average sample spacing corresponding to ~50 yr.

Results

We ran a Hendy test (Hendy, 1971) to assess the absence of non-equilibrium effects, evaporative effects or effects resulting from prior calcite deposition during formation of speleothem calcite, recognizing that the potential for sampling multiple laminae may lead to large uncertainties. Based on five stable isotope measurements from a single growth band, the linear regression skill for correlation between δ¹³C and δ¹⁸O was R² = 0.58, well below the 95% significance critical value of R² crit = 0.96, suggesting that our sample was not subject to significant effects of this sort. A previous study of OCNM speleothems found similar results (Turgeon, 2001).

An additional evaluation of evaporative effects is based on the fact that speleothems deposited under isotopic equilibrium should have constant δ¹⁸O of calcite (δ¹⁸Oc) values along a single growth band, owing to the relatively large amount of water available (Fantidis and Ehhalt, 1970; Hendy, 1971). We tested our sampling strategy for stable isotopes on this assumption by drilling at varying distances perpendicular to the growth axis. Isotopic measurements along the growth axis show no significant correlation between δ¹⁸Oc and sample distance from the growth axis, thus further suggesting deposition under isotopic equilibrium.

Variations in δ¹⁸O of stalagmite calcite reflect the temperature dependence of calcite-water isotopic fractionation and the δ¹⁸O of cave drippaters. The equilibrium fractionation in the calcite-water relationship is −0.24‰ °C⁻¹ (O’Neill et al., 1969). Observations from mid- to high latitudes (Dansgaard, 1964; Rozanski et al., 1993) suggest that δ¹⁸O in precipitation (δ¹⁸O p) has a temperature dependence of 0.5–0.7‰ °C⁻¹ (relative to surface air temperature). Four dripwater samples were collected from OCNM, and compared to the mean surface air temperature of the previous month, indicating an approximate temperature dependence of 0.46‰ °C⁻¹. Although additional sampling from OCNM is required to quantify this site-specific relationship, these preliminary data indicate that δ¹⁸O variations at OCNM are currently a function of air temperature. We qualitatively interpret changes in δ¹⁸O to be positively correlated to surface temperature changes. In addition to temperature, several other factors may cause temporal variations in δ¹⁸O p. Given the location of our site within 60 km of the Pacific Ocean, we focus on two potential effects: changing seawater composition and changes in moisture sources. We accounted for the effect of changing seawater δ¹⁸O (δ¹⁸Osw) by assigning a modern δ¹⁸Osw value of 0‰ and a last glacial maximum (LGM) value for the Pacific Ocean of 1‰ (Adkins et al., 2002). We then used the record of deglacial sea-level rise (Fleming et al., 1998) to interpolate δ¹⁸Osw values between the LGM and present and subtracted this signal from our measured δ¹⁸O p record.

It is more difficult to constrain the potential effect of changing moisture sources on our record, but examination of controls on modern climatology provides some insights into this question. We note that the current primary moisture source for the Pacific Northwest is derived from the central North Pacific associated with seasonal (winter) intensification of the Aleutian low-pressure cell. Source waters in this region are relatively isotopically homogenous (Schmidt et al., 1999), and any significant change in the δ¹⁸O of moisture would require a significant southward shift to a subtropical Pacific source, implicating a major reorganization of controls on atmospheric circulation over the Pacific Ocean.

We have no evidence that such reorganizations have occurred at the time scales of relevance to our record. For example, Ortiz et al. (1997) reconstructed flow of the northern California Current during the Last Glacial Maximum, and argued for relatively small changes in the position of the subpolar front, and continued presence of a subtropical gyre system off southern Oregon. Given this modest change to the extremes of the Last Glacial Maximum, we expect that plausible long-term atmospheric changes were of a magnitude similar to those that occur on a seasonal basis (changes in ocean–continent heating and attendant changes in the strength of the Aleutian low-pressure cell). Mantua et al. (1997) formulated the Pacific Decadal Oscillation (PDO) index, whereby a positive (negative) index is associated with cooler (warmer) SSTs in the central North Pacific, and warmer (cooler) SSTs in the Gulf of Alaska and along the Pacific coast of North America. The PDO parallels the dominant pattern of North Pacific sea-level pressure (SLP) variability, such that cooler than average SSTs occur during periods of lower than average SLP over the central North Pacific and vice
versa. Although coupled ocean–atmosphere general circulation models (GCMs) are of relatively coarse resolution, available simulations of millennial-scale changes that may have affected the Pacific Ocean based on such models suggest that the largest response was in sea-surface temperatures over the North Pacific, which was associated with intensification but not a major shift in the position of the westerlies near 50°N (Mikolajewicz et al., 1997). Atmospheric GCM simulations suggest that the primary response to orbital-scale changes and other large-scale boundary conditions that occurred during the last deglaciation involved a strengthening of the Aleutian low-pressure cell with only minor shifts in the storm tracks in our region (Bartlein et al., 1998).

The δ13C value in a speleothem reflects some combination of the δ13C of the underlying bedrock and the processes involved in calcite precipitation (Hendy, 1971). With continuous equilibration between the soil water and an unlimited soil CO2 reservoir, the δ13C value of the dissolved inorganic carbon (DIC) is determined by the δ13C value of soil CO2, which in turn depends on the ratio of C3 plants (δ13C ≈ −26‰) to C4 plants (δ13C ≈ −13‰) living in the soil, and on the ratio of atmospheric CO2 (δ13C = −7‰) to biogenic CO2 in the soil system (Cerling, 1984; Cerling et al., 1989; Genty et al., 2003). Dissolution of carbonate rock below the soil increases the δ13C of DIC when the percolating water becomes isolated from the soil CO2 reservoir. Further increases in δ13C values may occur by CO2 degassing of percolating waters and resulting calcite mineralization in the aquifer above the cave, rapid degassing of drippwaters in the cave, evaporation and kinetic fractionation (Baker et al., 1997).

Discussion

The last interglacial growth phase dated within the speleothem dated here agrees within error with a wet monsoon interval recorded in a speleothem record from Dongge Cave, China (Yuan et al., 2004). The growth phase dated in subsample A5 (58.7 ± 0.7 × 103 yr) correlates with a wet monsoon interval in Hulu Cave, China, (Wang et al., 2001) and with interstadial 17 from the GISP2 ice core, Greenland.

The next major growth phase began ~13,300 yr ago and continued to the present (Fig. 3). Following the removal of secular changes in δ18Omr, OCNM δ18O values range from ~9.0 to ~10.6‰ between 13,300 and 9200 yr ago (Fig. 4c). For comparison, an actively forming stalactite in OCNM has a δ18O value of −8.7‰ (Turgeon, 2001). The most pronounced signal is a change to lower (more negative) δ18O values that, within dating uncertainties, is synchronous with the onset of the Younger Dryas (YD) interval as defined by precisely dated, high-resolution isotope records from the GISP2 ice core (Fig. 4a) (Stuiver and Grootes, 2000) and a stalagmite from Hulu Cave, China (Fig. 4b) (Wang et al., 2001; Yuan et al., 2004). Specifically, OCNM δ18O values begin a gradual decrease at 12,840 ± 200 yr ago, in excellent agreement with the timing of the onset of the YD at GISP2 (12,880 ± 260 yr ago) and Hulu Cave (12,823 ± 60 yr ago). Unlike the abrupt onset of the YD in the GISP2 record, however, our record is more similar to that from Hulu Cave in showing a gradual change in δ18O values, culminating with the most extreme values at ~12,300 yr ago at OCNM and ~12,400 yr ago at Hulu Cave. Subsequently, both stalagmite records suggest an oscillation in δ18O during the YD. Finally, the OCNM record registers an abrupt increase in δ18O values at 11,700 ± 260 yr ago (uncertainty based on U-Th dates) that is synchronous with the abrupt termination of the YD in GISP2 (11,640 ± 250 yr ago) and in Hulu Cave (11,550 ± 100 yr ago) (Fig. 4).

The YD interval in OCNM δ18O corresponds to a change of 0.75‰. Insofar as the dominant control on δ18O in our OCNM stalagmite is atmospheric temperature, a 0.75‰ change corresponds to cooling over the cave during the YD interval. This cooling is in qualitative agreement with
the >3°C YD cooling of sea-surface temperatures (SSTs) recorded in marine core ODP-1019 120 km due west of OCNM based on foraminifera (Mix et al., 1999) and an organic alkenone index (Barron et al., 2003). SST records to the north (Kienast and McKay, 2001) and south (Mortyn et al., 1996) of the Oregon margin confirm that cooling of the northeastern Pacific was widespread during the YD.

From the termination of YD cooling until 9200 yr ago (the end of our record), δ18O values range from −10.2 and −9.1‰, averaging −9.8‰ (Fig. 4c). A 5-cm stalagmite from OCNM that grew between 4000 and 2000 yr ago has δ18O values ranging from −10 to −11‰ (Turgeon, 2001), suggesting warmer average temperatures over OCNM during the early versus the late Holocene. A similar contrast between early and late Holocene SSTs occurred off the Oregon coast (Mix et al., 1999; Barron et al., 2003).

Additionally, there is significant centennial-scale variability within our early Holocene δ18O record that indicates significant temperature changes (Fig. 4c). In particular, we note a warming event at 11,000 yr ago that is comparable in δ18O amplitude to temperature change estimated for the YD. As a preliminary analysis of the centennial variability for our record, we used a ten-point running mean smoother to remove millennial-scale variability and evaluated the residuals of that smoothing in terms of the strength of centennial-scale modes. Autocorrelation analysis yielded 95% significance correlations over the lags 140–250 yr. Spectral analysis of the record showed a narrow-band signal having a period of 190 yr. Because of the brevity of our record (4000 yr) relative to such bicentennial-scale variability, potential errors associated with detrending of millennial-scale variations, possible changes in accumulation rate and coarse sampling intervals, these time series analyses are considered preliminary.

Our OCNM δ13C record shows a relatively steady progression from values > −2‰ 13,300 yr ago to early Holocene values that average −7‰, with a limited expression of a YD signal (Fig. 4d). A pollen record from Bolan Lake, Oregon, 10 km southwest of OCNM, indicates that C3 plants have dominated the vegetation type in this region over the last 14,000 yr (Briles, 2003), suggesting that the trend towards lighter δ13C values in our record cannot be attributed to a transition from C4 to C3 plants. Because δ13C values < −6‰ are expected for a carbonate system dominated by C3 plants (Baker et al., 1997), we interpret the trend of decreasing δ13C values to record an increasing contribution from soil respiration rates relative to contributions from atmospheric CO2 and carbonate bedrock (−1.7‰ at OCNM; Turgeon, 2001). The Bolan Lake pollen record, for example, suggests that conifer forests migrated upslope after 14,500 yr ago, replacing sparse subalpine parkland vegetation near upper treeline (Briles, 2003). A forest composition similar to present only became established after 13,000 yr ago. The subsequent decrease in OCNM δ13C values may thus reflect some combination of an increase in biomass, an increase in moisture to enhance decay of organic matter and the relatively long time for buildup of organic matter in soils. The late Holocene (4000–2000 yr ago) OCNM δ13C record (Turgeon, 2001) has similar average values (−7 to −8‰) as our early Holocene δ13C record, suggesting that the modern soil CO2 reservoir was established by ~11,000 yr ago (Fig. 3).

Century-scale variations in δ13C of 1–2‰ occur throughout the early Holocene, although there is no apparent correlation with the δ18O record (Fig. 4). Such short-term variations may reflect variations in soil moisture and attendant rates of organic matter decay.

Conclusions

Proxy records indicate that YD cooling in the North Atlantic region was induced by a reduction in the Atlantic meridional overturning (AMO) and attendant heat transport (Hughen et al., 2000; McManus et al., 2004). Simulations with coupled atmosphere–ocean general circulation models suggest that zonal transmission of Atlantic thermal anomalies through the atmospheric circulation causes cooling over the entire extratropics of the Northern Hemisphere (Manabe and Stouffer, 1988; Mikolajewicz et al., 1997; Velinga and Wood, 2002). The synchroneity of the YD signal in three widely separated areas of the Northern Hemisphere (GISP2, Hulu Cave, OCNM) (Fig. 4) supports this mechanism. In particular, relatively high δ18O values from Hulu Cave record weakening of the East Asian summer monsoon in response to cooling over Siberia (Wang et al., 2001), whereas the relatively low OCNM δ18O values record cooling of the North Pacific associated with enhanced cold-air advection from Siberia, although decreased upwelling along the North American margin may have moderated this response (Mikolajewicz et al., 1997; Mix et al., 1999).

We note that the magnitude of northeast Pacific cooling indicated by SST reconstructions (Barron et al., 2003) is substantially larger than temperature changes simulated by these models. In part, this disagreement may reflect the modern boundary conditions used in the models, whereas the remnant Northern Hemisphere ice sheets and lower atmospheric greenhouse gas concentrations during the YD contributed to additional cooling. Feedbacks not well represented in the models, such as changing oceanic heat transport driven by the balance of surface and subsurface ocean flows, or regional expansion of snow cover in unresolved mountainous terrain, may also have contributed to a larger response.

Acknowledgments

We thank John Dodge for providing the speleothem to Oregon State University for study and John Roth of the
Oregon Caves National Monument for his support. Comments from two anonymous reviewers significantly improved the paper.

References

